Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Bíblia de pesquisa
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Scimago
  • Diretório de Periódicos de Ulrich
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Serviços de Indexação Científica (SIS)
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Tris[2-(Acryloyloxy)Ethyl]Isocyanurate Cross-Linked Polyethylenimine Enhanced Exon-Skipping of Antisense 2′-Omethyl Phosphorothioate Oligonucleotide in vitro and in vivo

Mingxing Wang, Bo Wu, Jason D Tucker and Peijuan Lu

Branched poly(ester amine)s (PEAs) based on tris[2-(acryloyloxy)ethyl]isocyanurate (TAEI) cross-linked low molecular weight polyethylenimine (LPEI, Mw: 0.8k/1.2k/2.0k) polymers have been evaluated for their ability to deliver antisense 2′-O-methyl phosphorothioate RNA (2′-OMePS) through in vitro and in dystrophic mdx mice. Almost all PEAs improved exon-skipping of 2′-OMePS both in vitro and in vivo. Especially the PEAs composed of PEI 2.0k (C series) enhanced 2′-OMePS delivery more effectively than PEI 0.8k or 1.2k-based series using a GFP reporter-based C2C12 myoblast culture system and in mdx mice. The highest efficiency of targeted exon-skipping of 2′-OMePS was obtained by PEA C14 [TAEI-PEI 2.0k (1:4)] with up to 6 fold increase compared with 2′-OMePS only in mdx mice via intramuscular injection without increased muscle damage. Enhanced exon-skipping and lower toxicity highlight the potential of this series biodegradable PEAs as safe and efficient 2′-OMePS delivery vectors for treating diseases such as muscular dystrophy with splicing modulation.