Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Bíblia de pesquisa
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Scimago
  • Diretório de Periódicos de Ulrich
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Serviços de Indexação Científica (SIS)
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Study of the Cytotoxicity Effect of Doxorubicin-loaded/Folic acid-Targeted Super Paramagnetic Iron Oxide Nanoparticles on AGS Cancer Cell Line

Mohammed Ghanbari, Asadollah Asadi and Somayyeh Rostamzadeh

Doxorubicins (Dox), a type of antibiotic and very effective anti-neoplastic agent, are routinely used in the treatment of cancers. The purpose of this research is to design a drug delivery system based on folic acid-targeted magnetic iron oxide nanoparticles and doxorubicin And also investigation of biological activity of doxorubicin in free mode and loaded onto the nanoparticles on cancer cell line is the another purpose of this research. Dox loading on iron oxide nanoparticles was performed by adsorption of its solution. Cytotoxicity of Dox, in free and loaded onto the nanoparticles, on gastric cancer cell line (AGS) was performed and compared by MTT assay. The morphological Studies of cells were performed with inverted microscope and fluorescence microscopy was used to study the penetration of nanoparticles in cells. The results of spectroscopic studies of UV/Visible and infrared diffuse reflectance spectroscopy (DRS) confirmed the binding of doxorubicin (DOX) to iron oxide nanoparticles that modified with folic acid. The results of MTT assay showed that the nanoparticles carrying Dox have faster and stronger impact on the growth inhibition of gastric cancer cells (AGS) than compared with Dox release form. Fluorescence microscopy studies confirmed the Presence of nanoparticles loaded with doxorubicin in cancer cells. It can be concluded from this study that the targeting transfer of Dox with iron oxide nanoparticles have an important role in enhancing the performance and cytotoxic activity of Dox and It can be found in the future that this nanodrug delivery systems can be optimized for use in clinical applications and effective treatment of cancer.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado