Indexado em
  • Banco de Dados de Periódicos Acadêmicos
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Scimago
  • Acesso à pesquisa on-line global em agricultura (AGORA)
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Comissão de Bolsas Universitárias
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Screening of Bio-Surfactant Production Ability among Organic Pollutants Degrading Isolates Collected From Egyptian Environment

Mariam Hassan, Tamer Essam, Aymen S Yassin and Aisha Salama

A total of ten bacterial isolates were screened for their biodegradation, metabolic versatility and biosurfactants production using various organic pollutants. The biosurfactants production ability was mainly assessed by oil spread test (OST) and/or emulsification assay (EA). Although initial biosurfactants screening was conducted using paraffin oil, the application of vegetable oils, particularly coconut oil, was always accompanied with the highest yield of biosurfactants production,. Biochemical and molecular identification of the ten isolates revealed that they belong to three genera; Klebsiella (6), Pseudomonas (3) and Citrobacter (1). Interestingly, four isolates (M2H2 1, M2H2 3, M2H2 8 and M2H2 14), showed the highest biosurfactants production and therefore were further assessed using mixed carbon source (coconut oil in combination with one organic pollutant (phenol or cyclohexanol)). The addition of the coconut oil was essential for increased production of biosurfactant, while the use of organic pollutant as a sole carbon source was always accompanied with lower productivity. Isolates (M2H2 1 and M2H2 14), showed the highest phenol biodegradation capacities (the most toxic pollutant), and were tested for the dual effect of biodegradation combined with biosurfactant production. Isolates M2H2 1 and M2H2 14 tolerated phenol concentrations up to 1500 and 1300 mgl-1, respectively, with no significant effect on biosurfactant activity. Adopting the induction regimen increased the phenol removal percentage from 2% to 66% and from 10% to 35% with isolates M2H2 1 and M2H2 14, respectively.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado