Indexado em
  • Banco de Dados de Periódicos Acadêmicos
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Scimago
  • Acesso à pesquisa on-line global em agricultura (AGORA)
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Comissão de Bolsas Universitárias
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Production of Polyhydroxyalkanoate from Paenibacillus durus BV-1 Isolated from Oil Mill Soil

Basavaraj Hungund, Shyama VS, Pallavi Patwardhan and Arabi Mohammed Saleh

Polyhydroxyalkanoates (PHAs) are polyesters naturally synthesized by numerous bacteria as intracellular energy storage materials during unbalanced growth. These polyesters find many applications in medicine, veterinary practice, tissue engineering, food packaging, etc. In the present study, spent wash and oil mill soil samples were screened for the isolation of bacteria producing polyhydroxyalkanoates. Different bacterial isolates were screened by PCR using primers designed for Bacillus megaterium. Isolate-4 reacted positively giving amplicons similar in size to that of Bacillus megaterium. Based on 16S rRNA gene sequences, isolate-4 was identified as Paenibacillus durus. Nitrogen limited mineral salt medium with fructose as chief carbon source was used for production of Polyhydroxybutyrate (PHB) in shake flask studies. The effect of various carbon and nitrogen sources on PHB production was evaluated, with respect to yield and PHB content. The study revealed that fructose and peptone gave better PHB accumulation and growth rates for the isolate and the reference strain, and hence, were the best among the carbon and nitrogen sources used. Further studies are needed to optimize the production conditions.