Indexado em
  • Banco de Dados de Periódicos Acadêmicos
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Scimago
  • Acesso à pesquisa on-line global em agricultura (AGORA)
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Comissão de Bolsas Universitárias
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Plant Proteins for Medical Applications

Narendra Reddy and Yiqi Yang

Plant proteins show good potential for medical applications but offer considerable challenges in fabricating biomaterials. Despite substantial efforts, especially in the last decade, to develop polymeric biomaterials, there are no polymers that are ideally suited for tissue engineering, drug delivery and other medical applications. Therefore, the quest to find new sources for biomaterials continues. Natural proteins such as collagen and silk, carbohydrates such as chitosan and cellulose and synthetic biopolymers such as poly (lactic acid) have been extensively studied for potential medical applications. Biotechnology and nanotechnology have also been widely adopted to develop regenerated and recombinant polymers for medical applications. The advent of nanotechnology and its many advantages for medical applications have led to the development of nanofibers and nanoparticles from both the natural and synthetic polymers for tissue engineering, controlled release and other medical applications. However, both natural and synthetic polymers currently available have many limitations that restrict their use for medical applications. Biomaterials developed from natural polymers do not have the desired mechanical properties for medical applications. For instance, scaffolds developed from collagen have poor hydrolytic stability and efforts to crosslink and improve the properties have not been successful to provide cytocompatible biomaterials. Although silk has excellent mechanical properties and biocompatibility, silk has slow degradation rates and it is difficult to dissolve and process silk into various types of biomaterials. Biomaterials developed from most synthetic polymers have the biocompatibility and mechanical properties but their degradation into toxic substances in the body is a cause for concern. Similarly, metal and ceramic based biomaterials do not have the desired degradability and are difficult to process into different forms of biomaterials.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado