Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Bíblia de pesquisa
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Scimago
  • Diretório de Periódicos de Ulrich
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Serviços de Indexação Científica (SIS)
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Peptide Nanomaterials Self-Assembled at Biointerfaces: Molecular Engineering and Biomedical Applications

Stefan Pintar

Peptide nanomaterials, formed through self-assembly at biointerfaces, present a promising avenue in biomedical research due to their tunable properties and versatile applications. This review discusses the fundamental principles underlying the selfassembly of peptide nanomaterials, emphasizing molecular engineering strategies that govern their structure and function. Key non-covalent interactions such as hydrogen bonding, hydrophobic interactions, electrostatic forces, and π-π stacking drive the spontaneous organization of peptides into various nanostructures including nanofibers, nanotubes, and hydrogels. The molecular design of peptide sequences, coupled with considerations of amphiphilicity, charge distribution, and length, allows precise control over nanostructure formation and properties. In biomedical applications, peptide nanomaterials demonstrate significant potential in drug delivery systems, tissue engineering scaffolds, diagnostic imaging agents, and biointerface coatings. Their biocompatibility, ability to target specific biological environments, and potential for controlled release systems highlight their utility in addressing challenges in modern medicine. Challenges such as scalability, stability, and immunogenicity are discussed, along with future directions aimed at optimizing peptide nanomaterials for clinical translation. Overall, peptide nanomaterials represent a promising class of biomaterials with multifaceted biomedical applications, offering opportunities for advanced therapeutic strategies and enhanced biomedical technologies.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado