Indexado em
  • Banco de Dados de Periódicos Acadêmicos
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • CiteFactor
  • Scimago
  • Diretório de Periódicos de Ulrich
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Comissão de Bolsas Universitárias
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Molecular Electrophilicity Index - A Promising Descriptor for Predicting Toxicological Property

Shalini, Tandon H and Chakraborty T

To define a chemical reaction, interactions between electrophiles and nucleophiles have paramount importance. The charge transfer between electrophiles and nucleophiles provides an insight to explain chemical behaviour. This kind of behavior is generally explained in terms of reactivity descriptors viz. electrophilicity index, global hardness etc. In the present report, we have tried to define electrophilicity index in force model. Though a number of scientists have already defined electrophilicity index in energy unit, definition of electrophilicity index in force model is yet to be explored. We have computed atomic electrophilicity index in force unit invoking following ansatz:

ω=χ2/2η

Where electronegativity (χ) and global hardness (η) both are defined in force unit. Our atomic data exhibits all sine qua non of periodic properties. Secondly, an attempt has been made to establish electrophilicity equalization principle and to compute molecular electrophilicity index through geometric mean equalization principle. Finally, we have attempted to correlate experimental toxicological properties in terms of our computed molecular electrophilicity index. 252 organic molecules with diverse toxicity have been modeled invoking our molecular electrophilicity index. A close agreement between experimental toxicity and our predicted data transpires the efficacy of our model.