Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Diretório de Periódicos de Ulrich
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • Diretório de Indexação de Resumos para Periódicos
  • OCLC- WorldCat
  • publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Machine Learning in Oncology: What Should Clinicians Know?

Deepak Mane

Abstract:

Over recent years, the amount and scope of scientific and clinical data in oncology has increased significantly, including but not limited to the field of electronic health data, radiographic and histological data and genomics. This growth promises a deeper understanding of malignancy and therefore personalised and more reliable oncological treatment. However, such objectives entail the creation of new methods to allow full use of the wealth of available data. Improvements in computer processing power and the advancement of algorithms have placed master learning, an artificial intelligence branch, in the field of oncology research and practise. This analysis offers a summary of the fundamentals of computer education and addresses recent advances and difficulties in the application of this technology to cancer diagnostics, prognosis, and treatment recommendations.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado