Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • CiteFactor
  • Diretório de Periódicos de Ulrich
  • Acesso à pesquisa on-line global em agricultura (AGORA)
  • Biblioteca de periódicos eletrônicos
  • Centro Internacional de Agricultura e Biociências (CABI)
  • RefSeek
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Scholarsteer
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Induction of New Defensin Genes in Tomato Plants via Pathogens-Biocontrol Agent Interaction

Hafez EE, Hashem M, Mahmoud M Balbaa, El-Saadani MA and Seham A Ahmed

Defensins and defensin-like peptides are functionally diverse and commonly presented as an immune reaction between plant and pathogen. Trichoderma viride and Bacillus subtilis as biological control agents, were inoculated into the soil, to suppress the activity of the pathogenic fungi Fusarium oxysporum and Rhizoctonia solani on tomato. The up- and down–regulated genes were examined in both treated and non-treated plants, using differential display technique. In treated plants, many up-regulated genes (21) with different molecular sizes, ranging from 50 to 7000 bp, were observed. Only four up-regulated genes were isolated from plants treated with B. subtilis+R. solani. The sequence analysis revealed that the identified genes were defensin genes; Amino Acid/Auxin Permease Family,
Endopolygalacturonase PG1, Fructose-1,6-bisphosphatase and glycosyl transferase. Moreover, chitinase gene, defensin genes (DF1 and DF2) were quantitatively determined using RT-PCR. The comparative expression level of the three induced genes was exponentially increased as a function of time, after the application of the biological control agents. However, while the expression levels of DF1 and DF2 were high in plants infected with either F. oxysporum or R. solani in the beginning of the experiment, the highest expression level of these genes was attained in the tomato plant treated with either T. viride or B. subtilis, after 24 hour post inoculation.