Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • CiteFactor
  • Diretório de Periódicos de Ulrich
  • Acesso à pesquisa on-line global em agricultura (AGORA)
  • Biblioteca de periódicos eletrônicos
  • Centro Internacional de Agricultura e Biociências (CABI)
  • RefSeek
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Scholarsteer
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Impact of Crop Residue and Corn-soybean Rotation on the Survival of Fusarium virguliforme a Causal Agent of Sudden Death Syndrome of Soybean

Shrishail S Navi and X B Yang

Soybean sudden death syndrome (SDS), caused by Fusarium virguliforme, is an economically important soilborne disease and is a major risk to many soybean [Glycine max, (L.) Merr.] production regions worldwide. Two-year studies were conducted in a greenhouse and in fields to examine survival of the fungus in corn-soybean residues. Corn kernels consistently showed significantly (P<0.05) higher F. virguliforme colony-forming units per gram of dry soil (CFU/g) in a greenhouse and in field micro-plots compared to no additional residue added treatment (control). None of the soil samples from commercial fields in Iowa showed significant (P<0.05) difference in F. virguliforme CFU/g within year of sampling, but between years there were numerical differences but not statistically different in samples if the previous crop had been corn, compared with winter wheat or soybean. In Fusarium spp. not causing SDS, CFU/g were significantly (P<0.05) higher in micro-plots amended with six different corn-soybean residue treatments compared with the control in 2008, while in 2009, only corn stock spread on soil showed significant (P<0.05) difference over the control. Our results suggest that a clean corn harvest could reduce SDS risk by reducing colonization of corn kernels that supports survival of F. virguliforme, while a considerable corn loss during harvest could increase SDS risk.