Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • CiteFactor
  • Diretório de Periódicos de Ulrich
  • Acesso à pesquisa on-line global em agricultura (AGORA)
  • Biblioteca de periódicos eletrônicos
  • Centro Internacional de Agricultura e Biociências (CABI)
  • RefSeek
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Scholarsteer
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Evaluation of the Efficacy of Trichoderma and Pseudomonas Species against Bacterial Wilt (Ralstonia Isolates) of Tomato (Lycopersicum Spp.)

Shashitu Aleling*

Ralstonia solanacearum causes bacterial wilt of tomato and limits the crop production, and antagonistic microorganisms such as fungi and bacteria are used to suppress the disease, of which Trichoderma spp. and Pseudomonas spp. are the most effective agents to control bacterial wilt of various horticultural and other crops. In the present study, attempt was made to isolate these two microorganisms to evaluate their effectiveness to control R. solanacearum the causal agent of bacterial wilt disease of tomato under greenhouse conditions. Thus R. solanacearum, Pseudomonas and Trichoderma spp. were isolated from wilted and healthy tomato plants grown from farmer's field in Ziway and Meki. The virulence of the pathogen and the antagonistic effect of the bacteria and fungi were evaluated against R. solanacearum in vitro and in vivo condition. Based on the in vitro results the best two isolates were selected to show their antagonistic effect under greenhouse condition in single and combined designs. The result showed the pathogenicity test of the isolates were evaluated under greenhouse condition, and isolate AAURS1 showed highest virulence (75%) followed by isolate APPRCRS2 with pathogenicity of 50%. With regard to antagonism test, isolates AAURB20 and AAUTR23 showed the highest inhibition against R. solanacearum with inhibition zone of 16 mm and 15 mm, respectively. Among the treatments co-inoculation (AAURB20+AAUTR23) was more effective and reduced disease incidence by 13.33% and increased the bio-control efficacy by 72.22% when compared with individual treatment and negative control (Un inoculated treatment). The isolates significantly increased the plant height and dry weight by 72.33 cm, and 12.18 g, respectively. Thus, the combined use of the biocontrol agents significantly reduced the incidence of tomato bacterial wilt disease. However, their performance should be evaluated using other yield parameters under field conditions to produce healthy tomato seedling to minimize the use of chemicals and reduce environmental pollution.