Indexado em
  • Acesso Online à Pesquisa em Meio Ambiente (OARE)
  • Abra o Portão J
  • Genamics JournalSeek
  • JournalTOCs
  • Scimago
  • Diretório de Periódicos de Ulrich
  • Acesso à pesquisa on-line global em agricultura (AGORA)
  • Biblioteca de periódicos eletrônicos
  • Centro Internacional de Agricultura e Biociências (CABI)
  • RefSeek
  • Diretório de Indexação de Periódicos de Pesquisa (DRJI)
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Scholarsteer
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Comissão de Bolsas Universitárias
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Effects of Bamboo Charcoal Added Feed on Reduction of Ammonia and Growth of Pangasius hypophthalmus

Quaiyum MA, Jahan R, Jahan N, Akhter T and Islam M Sadiqul

A 50-day feeding trial was conducted to determine the effects of dietary bamboo charcoal (BC) on ammonia (NH3-N) excretion and growth performances of Pangasius hypophthalmus. Four levels of BC (0%, 0.5%, 1% and 2%) were supplemented to the diet composition and fed to fish (initial body weight 1.18 ± 0.04 g) twice a day. At the end of the trial, mean of final weight (g), final length (cm), weight gain (g), length gain (cm), percent weight gain, percent length gain, specific growth rate (% per day), feed conversion ratio, survival rates and water quality parameters i.e, ammonia (NH3-N), pH, and dissolved oxygen were measured and found that fish fed 2% BC diet showed significantly (P<0.05) higher growth enhancement than those of fish fed the control diet (0% BC). Ammonia concentration over the experimental period decreased with increasing dietary BC. Moreover, in histological observation it was found that the villus height and villus area in all intestinal segments tended to increase with increasing dietary BC supplementation. The present results indicate stimulating effects of dietary BC on intestinal villi and the diet supplemented with 2% BC was found to have a suitable level to fulfill the maximum growth performances of P. hypophthalmus and to decrease the ammonia concentration.