Indexado em
  • Banco de Dados de Periódicos Acadêmicos
  • Abra o Portão J
  • Genamics JournalSeek
  • JournalTOCs
  • Bíblia de pesquisa
  • Diretório de Periódicos de Ulrich
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Scholarsteer
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Dengue Fever in Perspective of Clustering Algorithms

Kamran Shaukat1*, Nayyer Masood2, Ahmed Bin Shafaat1, Kamran Jabbar1, Hassan Shabbir1 and Shakir Shabbir1

Dengue fever is a disease which is transmitted and caused by Aedes Aegypti mosquitos. Dengue has become a serious health issue in all over the world especially in those countries who are situated in tropical or subtropical regions because rain is an important factor for growth and increase in the population of dengue transmitting mosquitos. For a long time, data mining algorithms have been used by the scientists for the diagnosis and prognosis of different diseases which includes dengue as well. This was a study to analyses the attack of dengue fever in different areas of district Jhelum, Pakistan in 2011. As per our knowledge, we are unaware of any kind of research study in the area of district Jhelum for diagnosis or analysis of dengue fever. According to our information, we are the first one researching and analyzing dengue fever in this specific area. Dataset was obtained from the office of Executive District Officer EDO (health) District Jhelum. We applied DBSCAN algorithm for the clustering of dengue fever. First we showed overall behavior of dengue in the district Jhelum. Then we explained dengue fever at tehsil level with the help of geographical pictures. After that we have elaborated comparison of different clustering algorithms with the help of graphs based on our dataset. Those algorithms include k-means, K-mediods, DBSCAN and OPTICS.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado