Indexado em
  • Banco de Dados de Periódicos Acadêmicos
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • CiteFactor
  • Scimago
  • Diretório de Periódicos de Ulrich
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Comissão de Bolsas Universitárias
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Crude Edible Fig (Ficus carica) Leaf Extract Prevents Diethylstilbestrol (DES)-Induced DNA Strand Breaks in Single-Cell Gel Electrophoresis (SCGE)/Comet Assay: Literature Review and Pilot Study

Alrena V Lightbourn and Ronald D Thomas

Fig (Ficus carica) trees are among the oldest plants on earth. The chemopreventive properties of constituent polyphenols and fiber that implicate figs in having a functional role in averting cancer have not been fully elucidated. We therefore hypothesized that fig leaf extract would inhibit (or attenuate) DES-induced DNA single-strand breakage in MCF10A human breast epithelial cells. To test this hypothesis, MCF10A cells were treated with DES (1, 10, 100 μM), crude fig leaf extract (5, 10, 15 μL), or concomitant doses of DES (100 μM)/fig leaf extract (5, 10, 15 μL). The cells were analyzed for DNA strand breakage using the SCGE/COMET assay with mean olive tail moment as a marker of DNA damage. DES induced DNA strand breaks at all treatment levels compared to DMSO and non-treatment controls. DES at concentrations of 1, 10, and 100 μM produced mean olive tail moments of 1.2082 (177.6%), 1.2702 (186.7%), and 1.1275 (165.7%), respectively, which were statistically significantly (p<0.05) higher than the DMSO control value (0.6803). Exposure to fig leaf extract produced no DNA damage. Rather, a desirable dose-dependent reduction in DES-induced DNA strand breaks was observed. Composite treatment of MCF10A cells with DES and fig leaf extract attenuated DES-induced DNA strand breaks. Taken together, these results suggest a potential mechanism for cancer chemoprevention. Additional studies are necessary to identify relevant active ingredients, confirm the mechanism of action, and further elucidate the therapeutic potential of fig leaf extract for early-stage breast cancer chemoprevention.