Indexado em
  • Banco de Dados de Periódicos Acadêmicos
  • Abra o Portão J
  • Genamics JournalSeek
  • JournalTOCs
  • Bíblia de pesquisa
  • Diretório de Periódicos de Ulrich
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Scholarsteer
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Fundação de Genebra para Educação e Pesquisa Médica
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Conceptual Aspects of Causal Networks in an Applied Context

Azam Yazdani, Akram Yazdani and Eric Boerwinkle

Making causal inference is conceptually straightforward in the setting of a randomized intervention, such as a clinical trial. However, in observational studies, which represent the majority of most large-scale epidemiologic studies, causal inference is complicated by confounding and lack of clear directionality underlying an observed association. In most large scale biomedical applications, causal inference is embodied in Directed Acyclic Graphs (DAG), which is an illustration of causal relationships (i.e., arrows) among the variables (i.e., nodes). A key concept for making causal inference in the context of observational studies is the assignment mechanism, whereby some individuals are treated and some are not. This perspective provides a structure for thinking about causal networks in the context of the assignment mechanism (AM). Estimation of effect sizes of the observed directed relationships is presented and discussed.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado