Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Bíblia de pesquisa
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Scimago
  • Diretório de Periódicos de Ulrich
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Serviços de Indexação Científica (SIS)
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Characterization and Evaluation of HepDOCA-doxorubicin Tagged Magnetic Nanoparticles for Hyperthermia

Chandraprabha MN, Lokesh KNL, Rashmi RB, Roshna RG and Vijai SN

This paper reports the hyperemia effect studies of drug-magnetic iron oxide nanoparticle conjugates (MION) for targeted cancer therapy. MIONs were synthesized by the method of co-precipitation using salts of iron as precursors. Chemically modified heparin derivative (heparin deoxycholate, hepDOCA) was complexed to chemotherapeutic drug, doxorubicin (DOX) and tagged to MIONs, which act as the drug-vectors. Each of these conjugates was characterized by SEM and DLS. To observe the effect of formulations, an inductor RF coil circuit was set up which ensured that the MIONs heat up in an AC magnetic field of 0.79 mT at 960 kHz. Hyperthermia treatment was performed on E.coli (DH5-α strain) cells and the growth of bacteria along with the protein released upon cell lysis was monitored. It was confirmed that HepDOCA- DOX-MION complex imparts damage to E.coli cells by the magneto-thermo-cytolysis on application of alternating magnetic field.

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado