Indexado em
  • Abra o Portão J
  • Genamics JournalSeek
  • Chaves Acadêmicas
  • JournalTOCs
  • Bíblia de pesquisa
  • Infraestrutura Nacional de Conhecimento da China (CNKI)
  • Scimago
  • Diretório de Periódicos de Ulrich
  • Biblioteca de periódicos eletrônicos
  • RefSeek
  • Universidade de Hamdard
  • EBSCO AZ
  • OCLC- WorldCat
  • Catálogo online SWB
  • Biblioteca Virtual de Biologia (vifabio)
  • publons
  • MIAR
  • Serviços de Indexação Científica (SIS)
  • Euro Pub
  • Google Scholar
Compartilhe esta página
Folheto de jornal
Flyer image

Abstrato

Bioeffects of Transient and Low-Intensity Ultrasound on Nanoparticles for a Safe and Efficient DNA Delivery

Mei Fen Shih, Chung Huang Wu and Jong Yuh Cherng

An important advantage of polymer-based gene delivery systems over viral transfection systems is that transient gene expression without the safety concerns can be achieved. In addition to the polymeric systems to deliver DNA, therapeutic ultrasound is potentially useful because ultrasound energy can be transmitted through the body without damaging tissues and could be applied on a restricted area where the desired DNA is to be expressed. In this study, bioeffects of ultrasound on the transfection efficiency and cytotoxicity of DNA-polymer complexes on mammalian cells (HEK-293 and COS-7 cell lines) were investigated.

Polymer-DNA ratios for optimal transfection efficiency and the size of PEI/DNA or PDMAEMA/DNA complexes were found not affected by ultrasound treatment. Also, electrophoresis results indicate that the tertiary DNA structure was not influenced by ultrasound when exposed up to 10 seconds. More importantly, cationic polymer-mediated cell transfection was significantly enhanced and reached a 150% increase by using ultrasound. Cytotoxicity of HEK-293 and COS-7 cell lines was not observed after ultrasound. Therefore, these results indicate that clinical applications of ultrasound could be used as a safe and efficient method for non-viral gene delivery

Isenção de responsabilidade: Este resumo foi traduzido usando ferramentas de inteligência artificial e ainda não foi revisado ou verificado